skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Roth, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agrawal, Shipra; Roth, Aaron (Ed.)
    Tree-based methods are popular nonparametric tools for capturing spatial heterogeneity and making predictions in multivariate problems. In unsupervised learning, trees and their ensembles have also been applied to a wide range of statistical inference tasks, such as multi-resolution sketching of distributional variations, localization of high-density regions, and design of efficient data compression schemes. In this paper, we study the spatial adaptation property of Bayesian tree-based methods in the unsupervised setting, with a focus on the density estimation problem. We characterize spatial heterogeneity of the underlying density function by using anisotropic Besov spaces, region-wise anisotropic Besov spaces, and two novel function classes as their extensions. For two types of commonly used prior distributions on trees under the context of unsupervised learning—the optional P{ó}lya tree (Wong and Ma, 2010) and the Dirichlet prior (Lu et al., 2013)—we calculate posterior concentration rates when the density function exhibits different types of heterogeneity. In specific, we show that the posterior concentration rate for trees is near minimax over the anisotropic Besov space. The rate is adaptive in the sense that to achieve such a rate we do not need any prior knowledge of the parameters of the Besov space. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Agrawal, Shipra; Roth, Aaron (Ed.)
    Tree-based methods are popular nonparametric tools for capturing spatial heterogeneity and making predictions in multivariate problems. In unsupervised learning, trees and their ensembles have also been applied to a wide range of statistical inference tasks, such as multi-resolution sketching of distributional variations, localization of high-density regions, and design of efficient data compression schemes. In this paper, we study the spatial adaptation property of Bayesian tree-based methods in the unsupervised setting, with a focus on the density estimation problem. We characterize spatial heterogeneity of the underlying density function by using anisotropic Besov spaces, region-wise anisotropic Besov spaces, and two novel function classes as their extensions. For two types of commonly used prior distributions on trees under the context of unsupervised learning—the optional P{ó}lya tree (Wong and Ma, 2010) and the Dirichlet prior (Lu et al., 2013)—we calculate posterior concentration rates when the density function exhibits different types of heterogeneity. In specific, we show that the posterior concentration rate for trees is near minimax over the anisotropic Besov space. The rate is adaptive in the sense that to achieve such a rate we do not need any prior knowledge of the parameters of the Besov space. 
    more » « less
  3. Agrawal, Shipra; Roth, Aaron (Ed.)
  4. Agrawal, Shipra; Roth, Aaron (Ed.)
  5. Agrawal, Shipra; Roth, Aaron (Ed.)
  6. Agrawal, Shipra; Roth, Aaron (Ed.)
    We study quantum state certification using unentangled quantum measurements, namely measurements which operate only on one copy of the state at a time. When there is a common source of randomness available and the unentangled measurements are chosen based on this randomness, prior work has shown that copies are necessary and sufficient. We show a separation between algorithms with and without randomness. We develop a lower bound framework for both fixed and randomized measurements that relates the hardness of testing to the well-established Lüders rule. More precisely, we obtain lower bounds for randomized and fixed schemes as a function of the eigenvalues of the Lüders channel which characterizes one possible post-measurement state transformation. 
    more » « less
  7. Agrawal, Shipra; Roth, Aaron (Ed.)
    We consider the problem of \emph{identifying,} from statistics, a distribution of discrete random variables $$X_1 \ldots,X_n$$ that is a mixture of $$k$$ product distributions. The best previous sample complexity for $$n \in O(k)$$ was $$(1/\zeta)^{O(k^2 \log k)}$$ (under a mild separation assumption parameterized by $$\zeta$$). The best known lower bound was $$\exp(\Omega(k))$$. It is known that $$n\geq 2k-1$$ is necessary and sufficient for identification. We show, for any $$n\geq 2k-1$$, how to achieve sample complexity and run-time complexity $$(1/\zeta)^{O(k)}$$. We also extend the known lower bound of $$e^{\Omega(k)}$$ to match our upper bound across a broad range of $$\zeta$$. Our results are obtained by combining (a) a classic method for robust tensor decomposition, (b) a novel way of bounding the condition number of key matrices called Hadamard extensions, by studying their action only on flattened rank-1 tensors. 
    more » « less